382 research outputs found

    Cloud-Based Optimization: A Quasi-Decentralized Approach to Multi-Agent Coordination

    Full text link
    New architectures and algorithms are needed to reflect the mixture of local and global information that is available as multi-agent systems connect over the cloud. We present a novel architecture for multi-agent coordination where the cloud is assumed to be able to gather information from all agents, perform centralized computations, and disseminate the results in an intermittent manner. This architecture is used to solve a multi-agent optimization problem in which each agent has a local objective function unknown to the other agents and in which the agents are collectively subject to global inequality constraints. Leveraging the cloud, a dual problem is formulated and solved by finding a saddle point of the associated Lagrangian.Comment: 7 pages, 3 figure

    Algorithm for Optimal Mode Scheduling in Switched Systems

    Get PDF
    This paper considers the problem of computing the schedule of modes in a switched dynamical system, that minimizes a cost functional defined on the trajectory of the system's continuous state variable. A recent approach to such optimal control problems consists of algorithms that alternate between computing the optimal switching times between modes in a given sequence, and updating the mode-sequence by inserting to it a finite number of new modes. These algorithms have an inherent inefficiency due to their sparse update of the mode-sequences, while spending most of the computing times on optimizing with respect to the switching times for a given mode-sequence. This paper proposes an algorithm that operates directly in the schedule space without resorting to the timing optimization problem. It is based on the Armijo step size along certain Gateaux derivatives of the performance functional, thereby avoiding some of the computational difficulties associated with discrete scheduling parameters. Its convergence to local minima as well as its rate of convergence are proved, and a simulation example on a nonlinear system exhibits quite a fast convergence

    Swarming robots

    Get PDF
    When lots of robots come together to form shapes, spread in an area, or move in one direction, their motion has to be planned carefully. We discuss how mathematicians devise strategies to help swarms of robots behave like an experienced, coordinated team
    corecore